Ergebnisse der Auswertungen flutungsinduzierter Seismizität aus dem Bergbaurevier Schlema/Alberoda

Evaluation of flooding induced seismicity in the mining area Schlema/Alberoda (Germany)

Prof. Dr. -Ing. habil. Heinz Konietzky
Dipl. Geophys. Holger Schütz
The uranium mine Schlema/Aberoda

- production from 1949 till 1990
- hydrothermal vein deposit
- roof mining technique
- total production 800,000 t uranium

After mining activities the mining concern converted from SDAG Wismut to recultivation concern named Wismut GmbH. Today's tasks are: secure the mine, clean the mine water before discharging in a nearby river, and recultivate the mine heaps.

Source: Wikipedia → Wismut(unternehmen)
Historical earthquake situation

Source: BGR
Geological situation

Conjugated faults

Mining

Roter Kamm

LfULG(2010)
Stations of operators network (in 2012)

- At surface (red)
- Underground (blue)
- Hydrophone (green)

Source: O. Wallner (Wismut GmbH)
Stations of University of Freiberg network (in 2012)

- All at surface
- Actual operating (red, green)
- Closed site (yellow)
Data over a period of approx. 20 years
Flooded hollow space approx. 34 Mio m³
Seismological data during flooding

Magnitude-frequency distribution of granite

![Diagram](image1)

\[N = 1315 \]

Magnitude-frequency distribution of schist

![Diagram](image2)

\[N = 111 \]
Estimated maximum magnitude for induced seismicity $M_L=2.4$
Source radius vs. magnitudes

Calculated with Mardariaga source model (circular fault)
Dislocation vs. magnitudes

Dislocation over magnitudes for $M_L \geq -1$ in granite

Calculated with Mardariaga source model (circular fault)
Correlations (hypocenters in granite)
Correlations (hypocenters in shists)

Correlations of induced seismicity with flooding for hypocenters in shists

- Correlation: Hydrostatic pressure / Cumulative seismic energy
- Correlation: Pressure change (dP/dt) / Seismic power (dE/dt)

Cf = 0.99, 0 days

Cf = 0.52, 17 days
Peak ground velocities (PGV) 1500m

Estimation of M_L from normed PGV-values (1500m) for events in granite

- Events $z=-1500$ m and -1800 m below surface
- Haired event
- Regression
- $3\times$ standard deviation

![Graph showing estimation of M_L from PGV values for events in granite](image-url)
Peak ground velocities

Place of origin

Way through the media

DIN 4150
Place of impact

Bildquelle: K. Meskouris et al., Seismologische Grundlagen
Peak ground velocities (PGV)

\[A(x) = A_0 \cdot e^{-\alpha(x-x_0)} \cdot \frac{X_0}{X} \cdot f_{(\text{Reflectionen})} \]

With neglected reflection function and \(\alpha \) assumed as constant:

- Determination of \(A_0 \) and \(\alpha \) from dataset
- Determination of a relation \(A_0 \) and \(M_L \)
- 540 datasets with PeakGroundVelocity (PGV)

\[\text{PGV}(x) = f_{(M_L)} \cdot e^{-\alpha(x-x_0)} \cdot \frac{X_0}{X} \]

\[f_{(M_L)} = 10^{0.873 \cdot (M_L) + 8.8} \]

\[\alpha = 0.000578 \]
Prediction of PGV
Prediction of PGV on map

hypothesized earthquake
depth = 1.7km
magnitude = 2
• 9 joint systems
• 2 types of rock
• 53 regions
• Frame for regional stress field (not visible)
Numerical modelling results (3DEC)

Joint movements during mining phase

Joint movements during flooding phase

Symbol: cube
- Slipping now
- Slipped (past)
- Tensile failure
Conclusions

• The maximum magnitude for induced seismicity is predicted with $M_L=2.4$. Mainly responsible for this maximum magnitude are the events in the granites.

• The correlations show a coherence of flooding and induced seismicity.

• The numerical simulations prove the coherence of flooding and induced seismicity.

• Prediction of PGV is possible but the damping parameter and the rock distribution in the underground has to be known well to get reliable results.
Acknowledgments

Thank you for your attention

Vielen Dank für ihre Aufmerksamkeit

The research work was founded by the German Federal Ministry for Environment (BMU) under the support code 0325191F and managed by Project Management Jülich (PTJ). The support of R. Mittag (seismological data interpretation, TU Bergakademie Freiberg), O. Wallner (geodetic interpretation, Wismut GmbH) and A. Hiller (geological information, Wismut GmbH) throughout the whole project is highly acknowledged.