Comparison of constant normal load (CNL) and constant normal stiffness (CNS) direct shear tests

Saida Poturovic, Wulf Schubert, Manfred Blümel
Institute for Rock Mechanics and Tunnelling, Graz University of Technology, Graz, Austria
Shear Strength behavior of rock joints

Schubert (2014)
Comparison of CNL and CNS direct shear tests

Boundary conditions
Comparison of CNL and CNS direct shear tests

Test preparation

Poturovic (2014)
Performing tests

<table>
<thead>
<tr>
<th>Testing procedure</th>
<th>Test name</th>
<th>Initial stress σ_0 [Mpa]</th>
<th>Normal stiffness K_n [Mpa/mm]</th>
<th>Velocity v [mm/min]</th>
<th>Displacements u [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS</td>
<td>CNS01</td>
<td>0.50</td>
<td>∞</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNS02</td>
<td>1.00</td>
<td>∞</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNS03</td>
<td>2.00</td>
<td>∞</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNS04</td>
<td>0.62</td>
<td>5.00</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNS05</td>
<td>0.65</td>
<td>2.50</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>WCNS05</td>
<td>0.65</td>
<td>2.50</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNS06</td>
<td>0.65</td>
<td>1.25</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td>CNL</td>
<td>CNL04</td>
<td>0.20</td>
<td>0.00</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNL05</td>
<td>0.50</td>
<td>0.00</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNL06</td>
<td>1.20</td>
<td>0.00</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNL03</td>
<td>2.31</td>
<td>0.00</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNL02</td>
<td>3.62</td>
<td>0.00</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNL01</td>
<td>4.93</td>
<td>0.00</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNL07</td>
<td>8.00</td>
<td>0.00</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CNL08</td>
<td>11.00</td>
<td>0.00</td>
<td>0.50</td>
<td>25</td>
</tr>
</tbody>
</table>

Material properties:
- UCS = 60 MPa
- $E = 19500$ MPa
- $\phi_B = 39^\circ$
Comparison of CNL and CNS direct shear tests

Normal and Shear strength [Mpa]

Horizontal displacements [mm]

Vertical displacements [mm]
Coefficient of friction

- Relative shearing resistance τ/σ

\[\arctan\left(\frac{\tau}{\sigma}\right) = \phi + i \]

- Arctan(τ/σ) = \phi + i

Graphs showing the comparison of CNL and CNS direct shear tests.
Comparison of CNL and CNS direct shear tests

Coefficient of friction

- Relative shearing resistance τ/σ
 - $\tau/\sigma = \varphi + i$
 - Arctan(τ/σ) = $\varphi + i$

\[\varphi + i = 45° \]
Comparison of CNL and CNS direct shear tests

Stiffness and dilation capacity

Angle of dilation i:

- For CNL:
 $$\tan i = \frac{dv}{du}$$

- For CNS:
 $$\tan i_f = \frac{d\sigma_n}{du} \frac{knn + K}{knn \times K}$$
 $$\tan i_f = \frac{d\sigma}{du \times k_{nn}}$$

- $K = \infty$:
Comparison of CNL and CNS direct shear tests

CNS01 $K=\infty$

CNS04 $K=5$ MPa/mm

Shear displacements [mm]

Normal displacements [mm]

-2.0 -1.5 -1.0 -0.5 0.0 0.5
0 5 10 15 20 25

-2.0 -1.5 -1.0 -0.5 0.0 0.5
0 5 10 15 20 25

Legend:
- $\varphi+i$
- φ
- Fictitious dilation if
- Measured dilation i
- Dilation potential
Comparison of CNL and CNS direct shear tests

CNL03 $K=0$ MPa/mm $\sigma_o=2.3$ MPa

CNL05 $K=0$ MPa/mm $\sigma_o=0.5$ MPa

Shear displacements [mm]

Normal displacements [mm]

- Graphs showing shear angle vs. shear displacement for CNL03 and CNL05 tests.

- Legend:
 - $\varphi+i$
 - φ
 - Measured dilation i
 - Dilation potential

- Axes:
 - X-axis: Shear displacements [mm]
 - Y-axis: Normal displacements [mm]
Dilation potential

Comparison of CNL and CNS direct shear tests

CNL

- σ_0 [Mpa]: 0.2, 0.5, 1.2, 2.3, 3.6, 4.9, 8, 11
- Dilation potential

CNS

- K [Mpa/mm]: 1.25, 2.50, 5.00, 0.50, 5.00, ∞, ∞, ∞
- σ_0 [Mpa]: 0.65, 0.65, 0.62, 0.50, 0.50, 1.00, 2.00
- Dilation potential

EUROCK

6th GEOMECHANICS COLOQUIUM

AUSTRIAN SOCIETY FOR GEOMECHANICS

INTERNATIONAL SOCIETY FOR ROCK MECHANICS

TU Graz

Institut für Feinmechanik und Materialprüfung
Subtraction of dilation

Comparison of CNL and CNS direct shear tests
Comparison of test results

Comparison of CNL and CNS direct shear tests

<table>
<thead>
<tr>
<th>CNS</th>
<th>σ_o</th>
<th>K</th>
<th>ϕ_i</th>
<th>ϕ_{eff}</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS01</td>
<td>0.50</td>
<td>∞</td>
<td>51.14</td>
<td>15.54</td>
<td>35.6</td>
</tr>
<tr>
<td>CNS02</td>
<td>1.00</td>
<td>∞</td>
<td>45.31</td>
<td>8.51</td>
<td>36.8</td>
</tr>
<tr>
<td>CNS03</td>
<td>2.00</td>
<td>∞</td>
<td>47.65</td>
<td>10.35</td>
<td>37.3</td>
</tr>
<tr>
<td>CNS04</td>
<td>0.62</td>
<td>5.00</td>
<td>45.90</td>
<td>6.02</td>
<td>39.88</td>
</tr>
<tr>
<td>CNS05</td>
<td>0.65</td>
<td>2.50</td>
<td>54.13</td>
<td>14.31</td>
<td>39.82</td>
</tr>
<tr>
<td>CNS06</td>
<td>0.65</td>
<td>1.25</td>
<td>47.56</td>
<td>6.61</td>
<td>40.95</td>
</tr>
<tr>
<td>CNS07</td>
<td>0.50</td>
<td>0.50</td>
<td>49.16</td>
<td>7.28</td>
<td>41.88</td>
</tr>
<tr>
<td>CNS08</td>
<td>0.50</td>
<td>5.00</td>
<td>47.72</td>
<td>9.90</td>
<td>37.82</td>
</tr>
</tbody>
</table>

Mean value

CNL

<table>
<thead>
<tr>
<th>CNL</th>
<th>σ_o</th>
<th>τ_{peak}</th>
<th>ϕ_i</th>
<th>ϕ_{peak}</th>
<th>ϕ_{max}</th>
<th>ϕ_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNL04</td>
<td>0.20</td>
<td>0.37</td>
<td>61.60</td>
<td>16.60</td>
<td>45.00</td>
<td>15.16</td>
</tr>
<tr>
<td>CNL05</td>
<td>0.50</td>
<td>0.76</td>
<td>56.66</td>
<td>14.66</td>
<td>42.00</td>
<td>13.70</td>
</tr>
<tr>
<td>CNL06</td>
<td>1.20</td>
<td>1.55</td>
<td>52.25</td>
<td>11.25</td>
<td>41.00</td>
<td>15.80</td>
</tr>
<tr>
<td>CNL03</td>
<td>2.30</td>
<td>2.67</td>
<td>49.26</td>
<td>10.76</td>
<td>38.50</td>
<td>9.40</td>
</tr>
<tr>
<td>CNL02</td>
<td>3.60</td>
<td>3.85</td>
<td>46.92</td>
<td>11.92</td>
<td>35.00</td>
<td>11.86</td>
</tr>
<tr>
<td>CNL01</td>
<td>4.90</td>
<td>4.91</td>
<td>45.05</td>
<td>9.05</td>
<td>36.00</td>
<td>6.78</td>
</tr>
<tr>
<td>CNL07</td>
<td>8.00</td>
<td>7.23</td>
<td>42.10</td>
<td>6.10</td>
<td>36.00</td>
<td>4.80</td>
</tr>
<tr>
<td>CNL08</td>
<td>11.00</td>
<td>9.03</td>
<td>39.38</td>
<td>4.38</td>
<td>35.00</td>
<td>3.60</td>
</tr>
</tbody>
</table>

Mean value

48.57 9.81 38.76
Comparison of the obtained results with the empirical methods
Conclusion

- Friction angle and dilation are key factors that determine the shear strength of rock joints.

- CNS test procedure seem more realistic and therefore more common, especially in the context of underground construction.

- Compared to CNL test procedure, the CNS requires fewer tests as the failure criterion can be determined with one test only.
Glück Auf!